INF1060 - Introduksjon til
operativsystemer og
datakommunikasjon - Kompendium

VEGARD BERGSVIK @VSTEGARD

25-11-2017

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

Contents

1 Programmeringsspraket C

11 KortomC . o o e e 6
1.2 Fordeler: o e 6
1.3 Ulemper: . . e e e e e e e e 6
1.4 Kompilering o o e 6
1.5 Ciforholdtildava e 6
1.6 Viktige forskjeller L 7
1.7 SENG . . e e e e 7
1.8 priantf . . e e e e e e 7
1.9 Pekere-*og&-Dettetartid.. e e 7
100 Minneallokering L e 9
101 Innlesingfrabruker L L 9
TIT Filer . . e e e e e e e e e e 9

112 Innlesingfrafil e e 9
103 Man-sider e e e e e e e e e 9
104 Minnetidatamaskinen L e 10
105 Bitoperasjoner e e e e e e e e e e e e e 10
106 Dobbelpekere o e e e e e 10
1061 Hensikten e e e e e 10
106.2 typedef e e e 1
106.3 HeapogStack e e e e e e e e e e 1

107 Flerefiler . . o o o e 1
118 Header-filer o o e e 12
2 OS:Introduksjon 12
21 Hardware o e e e 12
2.2 Whatisanoperatingsystem (OS)? 12
2.3 OSCategories o i e e e e e e e 12
2.4 Whystudy OSes? e e e e e e e e e 12
2.5 0OScomponentsand Services i i i i e e e e e e e e e e 13
251 Primary COMponents o v i i e e e e e e e e e e e e e e e e e 13

2.5.2 Devicemanagement L. e e 13

253 Interfaces e e e e 13

2.6 Interrupts L e e e e e e e e e e e e e 13
2.7 EXCEPLiONS . . . e e e e e e e e e 13
2.8 Booting, protection, kernel organization o L oL 14
2.9 SUMMANY o o e e e e e e e e e e e e e e e e e e e 14
2.9.1 Whywe haveitand whyyoushouldcare(0S) 15

2.9.2 WhatdoesBlOSand bootstrapdo? e 15

Vegard Bergsvik @vstegard 2

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017
2.9.3 Levelsandtheirimportance. 15
2.9.4 Callingasystemfunction(egread) 15
2.9.5 Monolithicvsmicrokernels e 15
2.9.6 Whatisaninterrupt? e e e e e e e 16

3 0S:Processes & CPU Scheduling 16

30 ProCesses . . . o i e e e e e e e e e e 16
300 ProcessCreation e e e 16

312 ProgramExecution e e e e 16

313 ProcessWaiting L. e e e 16

3.1.4 ProcessTermination L e e e 17

315 Processstates e 17

3.1.6 ContextSwitches L e 17

317 ProcessesvsThreads e 17

3.8 Scheduling o e e e e e e 18

3.2 CPUScheduling. e e e e 18
3.3 FIFOandRoundRobin e 18
3.4 Scheduling:Goals 19
3.5 Schedulingclassification 19
350 Preemption e e e e e e e e e 20

3.6 SUMMANY . . o o o e 20
3.6.1 Preemptivevsnon-preemptive e e e e e 20
3.6.2 Cooperative Scheduling/Multitasking 20
3.6.3 Virtualmemory>Programrelocation. 20
3.6.4 SIimple UNIX e e e e e e e 20
3.6.5 fork()andexecve() e 21
3.6.6 fork() bombwithwhile(1) fork()andif(fork() != 0) exit(®) 21
3.6.7 Contextswitching e 21

4 0S: Managing memory 22
41 Hierarchies e 22
4.2 Absoluteand Relativeaddressing 22
4.3 ProcessesMemory layouts e e e e e e e e e 22
4.4 GlobalMemorylayout e e e e 22
4.5 Multiprogrammed and memory management 23
451 Fixed Partitioning e 23
4.5.2 DynamicPartitioning L 23
453 BuddySystem e e e e e e e 23
4.5.4 Segmentation e e e e e e 24

455 Paging e e e e e 24
456 VirtualMemory o o o e e e e e e e e e 24

457 Pagefault e e e e 24
Vegard Bergsvik @vstegard 3

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium

25-11-2017

4.6

4.5.8 Speedinguppaging e
SUMMANY © o e
4.6 Multiprocessing Lo e
4.6.2 Partitioning. e
4.6.3 Segmentation e
4.6.4 Fragmentation e
4.6.5 Paging e
4.6.6 Absoluteandrelativeaddresses
4.6.7 LRU . . . e

5 OS: Storage: Disks & File Systems

5.1

6 Storage space is dependent on: * # Platters * One or both sides *

(Mechanical) Disks e
511 ButwehaveSSDs! e
5.1.2 Mechanicsof Disks-Video
513 Diskcapacity e e e

7 Tracks per surface * # sectors per track * bytes per sector

7.1
7.2

7.3

8.1

8.2
8.3
8.4
8.5

8.6

7.01 DiskAccessTime o v v i i e e e
7.0.2 Writingand modifyingblocks
7.03 DiskController
DataPlacement e
Disk Scheduling e
7210 ModernDisk Scheduling
SUMMANY © o e
7301 Disk . . o . e e
7.3.2 Accesstime e e e
7.3.3 Diskscheduling
734 Caching

: Inter-Process

Managing Mailboxes
Pipes . . . e e e e e
Mailboxesvs Pipes e e e e e
Sharememory e
Signals e
8.5.1 Signalhandling
SUMMANY . . o L e e e e e e e e e e e e
8.6.1 IPCs . . o o
8.6.2 Shared memorysegments.
8.6.3 mmapandsmget

............ 26

Vegard Bergsvik @vstegard

https://www.youtube.com/watch?v=wteUW2sL7bc

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium

25-11-2017

9 DC:Intro to data communication

9.0.1 Internet L e e e e e e
9.0.2 Endsystems e e e e
9.03 Protocols e e e
9.0.4 TCP/IP-protocolstack
9.05 OSI-model e
9.0.6 Layering: logical communication
9.0.7 Protocollayeranddata,
9.0.8 Corenetworks e

10 - Graph of interconnected routers ### Circuit Switching

10.0.1 Networklayer:IP e
10.0.2 Transportlayer: TCP e e e e
10.0.3 Transportlayer:UDP e e
101 SUMMANY . . . o e
1011 Internet L L e
10.1.2 Endsystem e e e e e
10.1.3 Protocols e e e e e
10.1.4 Protocolstack e
10.1.5 OSl-model e
10.1.6 Physical/Logical communication,
10.1.7 CommunicationMedia. L L
10.1.8 Circuitswitching e
10.1.9 Packetswitching L
10.100 Headers. i e e e e e e
10001 Trailers o o e e e e e e

11 DC: Introduction to Berkeley sockets

1M1 Read &Write o o e e e e e e e
11.2 AlternativestoRead & Write e
11.3 Creationofaconnection e
11.4 Specialfortheserverside e

Vegard Bergsvik @vstegard

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

1 Programmeringsspraket C

1.1 KortomC

+ FadtiPalo Alto fra ca 1960

+ Far: Dennis Ritchie

« Standard i system-programmering siden fgdsel.
+ CogUnixerulgselige siamesiske tvillinger.

« Cersuper rask kode.

+ Girinnsikt i hvordan datamaskin og OS fungerer.
« Formalet er 4 gi tilgang til maskinens ressurser

+ Simplifisere maskinkode

« Kompakte programmer

+ Raske programmer

1.2 Fordeler:

+ Kjapp kompilering
+ God standardisering

1.3 Ulemper:

« Ingen standard feilhandtering
« lkke portabelt, ma rekompileres for ulike arkitekturer.

1.4 Kompilering

C kompileres med gcc hello.c -o hello ogkjgresmed . /hello.

1.5 Ciforhold til Java

« Variabler deklareres likt.
« If-else skrives likt.
« Lokker ersa ogsi likt

- | for-lekker ma int - deklareres forst.
+ Funksjoner er like
« Arrays er nesten like

- C

int arrl[] = {1,2,3};
- Java:

Vegard Bergsvik @vstegard 6

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

int[] arrl = {1,2,3};
+ C har ikke Objekter og klasser men strukturer:
+ Lenkede lister er noe annerledes.
« Komplekse datastrukturer er ikke innebygd i C, algoritmene etc ma skrives selv.

1.6 Viktige forskjeller

+ Ingen boolean typeiC
- Oer false
- Altanneter true
« String er ikke innebygget i C.
- Ma bruke en array av char.
+ Objekter:
- Ikke egne metoder/funksjoner
- Ingen private verdier

1.7 String

« Eregentlig arrayer med bokstaver.
« Deklareres slik

char name[] = "Trunald Dump'";

1.8 printf

+ Deklarering:

int printf(const char *format, ...)
+ %s er string og %d er integer
« Eksempel:

char * name = "John Smith";

int age = 27;

printf("%s is %d years old.\n", nae, age);

1.9 Pekere - x og & - Dette tar tid..

+ Alle variabler er en plass i minnet, og alle plasser i minnet har en adresse.

« Disse kan aksesseres ved a bruke pekeren &.

Vegard Bergsvik @vstegard 7

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017
« Eksempelvis:
#include <stdio.h>
int main () {
int varl;
char var2[10];
printf("Address of varl variable: %x\n'", &varl);
printf("Address of var2 variable: %x\n", &var2);
return 0;
}
Vil returnere:
Address of varl variable: bff5a400
Address of var2 variable: bff5a3f6
+ En peker er en variabel som har adressen til en annen variabel i minnet som verdi.
+ Deklarering
type *var—-name;
« Asterisken, eller gange-tegnet, brukes for a sette en variabel som en peker.
+ Kokebok:
1. Definer peker variabel.
2. Sett adressen til en variabel til pekeren
3. Tilslutt, hent ut verdien tilgjengelig ved adressen i peker-variabelen.
+ Eksempel:
#include <stdio.h>
int main () {
int var = 20; /* actual variable declaration *x/
int *ip; /* pointer variable declaration */
ip = &var; /* store address of var in pointer variablex/
printf("Address of var variable: %x\n", &var);
/* address stored in pointer variable */
printf("Address stored 1in ip variable: %x\n", ip);
/* access the value using the pointer */
printf("Value of *ip variable: %d\n", xip);
return 0;
}
Gir:
Address of var variable: bffd8b3c
Address stored in 1ip variable: bffd8b3c
Value of *ip variable: 20
Vegard Bergsvik @vstegard 8

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

1.10 Minneallokering

+ malloc(antall bytes) lar oss allokere vilkarlig store minneomrader.

- charx s = malloc(5000) - Char array med lengde 5000 bytes.
« Spar farst em starrelse av input, sa lengde.
+ Generelt:

- typex s = (typex) malloc(size * sizeof(type));

- Eks:intx arr = (intx) malloc(5000 * sizeof(int));

1.11 Innlesing fra bruker

« atoi() = asci to integer
« Alloker plass til “0” byten

1.11.1 Filer

« fgets(xxx,xxx,stdin) leser fra brukeren
- stdin erinput

1.12 Innlesing fra fil

#include <stdio.h>

#include <stdlib.h>

charx read_file(char x*file_name) {
int read_size;

char buf[64];

FILE *file = fopen(file_name, "r'");
fgets(buf, sizeof(buf), file);
read_size = atoi(buf);

char *s = (char*) malloc(read_size * sizeof(char) + 1);
fgets(s, read_size + 1, file);
return s;

+

int main(void) {

char xs = read_file("test.txt");
printf("%s\n", s);

+

1.13 Man-sider

+ Dokumentasjon som fglger med software

Vegard Bergsvik @vstegard 9

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium

25-11-2017

- C
- Dokumentasjon for funksjonene i C-bibliotekene
- “standard” funksjoner
- Prgv:iman 3 fgets

1.14 Minnetidatamaskinen

Enrekke 0 og1

« Adresserbar

« Som en veldig lang array eller streng

« Vikan:

- Skrive

- Lese

- Flytte(Sletter ikke den gamle verdien)

1.15 Bitoperasjoner

« Vi kan utfgre bit-operasjoner pa hvert enkelt byte
» Operatgrer:

NOT 0101 gir 1010 (~)

1111 AND 1010 gir 1010 (&)

OR(])

XOR (%)

SHIFTR (>>)

SHIFT L (<<)

1.16 Dobbelpekere

+ Repetisjon: En peker er en variabel som peker et sted i minnet.

+ Dobbelpeker er da en peker hvor det stedet det pekes pa ogsa er en peker.
int a = 123;
int *p = &a;
int *xdouble_p = &p;

1.16.1 Hensikten

+ Laen funksjon endre adressen til en peker.
« Dobbel-array eksempler:
- En liste med bokstaver: char *ord
- Enliste med ord: char x**setning

Vegard Bergsvik @vstegard

10

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

1.16.2 typedef

« Eksempel:

typedef struct person{

int age;

} person _s;

person_s **person = malloc(..);

1.16.3 Heap og Stack

Dynamisk og statisk allokering

« Statisk minneallokering kan ikke endres og fungere ikke utenfor en funksjon. char buf[100] (STACK)
+ Dynamisk minneallokering kan endres og fungerer utenforen funksjon. char *s = malloc(sizeof(char)
* 100) ; (HEAP)

Stack

+ Lastin first out.
+ Brukesttil:
- Lokale variable
- Funksjonskall
+ Har begrenset plass.
- “Stack overflow” kommer nar man “bruker opp” stacken.

Heap

« “Uendelig” stort minneomrade
« Styres av brukeren
- Brukestil:
- Mellomlagre variabler
- Global tilgang
« malloc()
- Allokerer minnet vi trenger til senere i heapen
o free()
- Frigjer minnet allokert av brukeren
- Minnet er begrenset
- Hvorfor holde pa en tung stein du ikke skal bruke?

1.17 Flere filer

+ Husk pre-deklarering

Vegard Bergsvik @vstegard 1

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium

25-11-2017

1.18 Header-filer

+ Kan inneholde felles definisjoner
- "header.h" ->Ligger i samme mappe
- <header.h> ->Liggeri C biblioteket

« #includelimerinn koden hvor vijobber

« #ifndef __PERSON_H ->Hvis IKKE definert
- #define __PERSON_H ->Sa definer

2 OS: Introduksjon

2.1 Hardware

« CPU

+ Memory

« 1/O devices
« Links

2.2 What is an operating system (0S)?

+ Briefly told a set of codes that manage hardware to perform a set of very complicated operations, involving

registers, stacks, calls and so on, to make our life simpler.

« A middle man that tells hardware what to do when commanded by different applications.

« Hardware -> OS -> Application -> User
« Hides messy details and presents a virtual machine. (top-down view)
+ Resource manager. (bottom up-view)

2.3 OS Categories

+ Single user, single-task

+ Singe user, multi-tasking
+ Multi user, multi-tasking
+ Distributed OSes

+ Real-time OS

+ Embedded OSes

2.4 Why study OSes?

« WRITE FASTER AND MORE EFFICIENT CODE!
- Think of a car where the OS prioritizes the wrong sensors.

Vegard Bergsvik @vstegard

12

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium

25-11-2017

+ Understand trade-offs between performance and functionality, division of labor between HW and SW.

2.5 OS components and services
2.5.1 Primary components

+ User interface

+ File management

+ Device management

+ Processor (prosess) management
+« Memory management

« Communication services

2.5.2 Device management

« Manages keyboards, mouse, disc, camera etc.

+ Large diversity

« HUGE amount of code (ca 95% of the Linux code)

+ Device drivers talk to to the controller and gives commands
+ Each device may need different device-specific software

2.5.3 Interfaces

« System calls:
- Applications call the system call interface witch calls the OS components.
* Example: read(...)

2.6 Interrupts

+ Electronic signals that result in a forced transfer of control to an interrupt handling routine.

- alternative to “polling”

- caused asynchronous events

- IDT associates each interrupt with a code descriptor
- can be disabled

2.7 Exceptions

+ Another way for the processor to interrupt program execution.
- Traps
- Faults
- Aborts

Vegard Bergsvik @vstegard

13

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium

25-11-2017

2.8 Booting, protection, kernel organization

+ Booting:
- read root file system and locate file with OS kernel
- load kernel into memory
- run kernel
+ Protection
- OSdistinguish user-level and kernel-level protection
- Applications and many sub-systems run in user mode (level 3)
- 0Ses run in kernel mode (level 0)
* Real mode
* access to the entire memory
* allinstructions can be executed
* bypass security
« OS organization
- Monolithic kernels (“The big mess”):
* a collection of functions linked into a single object
* usually efficient
* easy to crash
* UNIX, Linux, Windows 7+..
- Micro kernels
* minimal functionality

* other services are implemented in server processes running in user space used in a client-server

model
* lot of message passing
* small, modular, portable
* MACH, L4, Chrous
- Virtualisation
* Save energy
* “Fail-safe”
* Type 1 Hypervisor
* Type 2 Hypervisor
* Sandboxing

2.9 Summary

+ Work as resource managers
« Provide different services
+ Users access services using a interface like system calls

Vegard Bergsvik @vstegard

14

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

2.9.1 Why we have it and why you should care (0S)

Instead of telling the CPU, memory, GPU and all the other stuff packed in you computer, the OS makes life a lot
simpler for e.g Google Chrome to browse to Facebook during a lecture. It is a middleman between hardware and
software that works pretty much the same no matter what HW your machine is running. This in turn makes programs
portable over different hardware and it also makes the HWs resources abstract and shareable. As a programmer
one can access these resources and manipulate them to do awesome stuff. One last thing to note is that it provides
a security framework in the digital world.

Having some fundamental knowledge about this colossus digital labyrint, can help save lives or lessen user aggres-
sion when constructing an application. One also learns to debug and understand software when programming in
low-level languages such as C, and the trade-offs between performance and functionality and the division of labour
between HW and SW.

{% capture images %} /images/os.jpg {% endcapture %} {% include gallery images=images caption="" cols=1 %}

2.9.2 What does BIOS and bootstrap do?

The Basic Input-Output System is a mini-program designed to prepare and start the HW so that the OS can do its
magic on it. Itis run of a non-volatile flash memory built in on the mother-board. It does a self-test and checks the
HW when the system is powers up. Then it loads boot data from the boot sector, drags it to the system memory,
executes the program on the CPU witch in turn loads the OS and runs it in a similar fashion.

2.9.3 Levels and their importance.

The OS distinguishes user-level and kernel-level protection to do just that, protect the system. The OS runs in kernel
mode(level 0) which is the top, or bottom, level. This level runs in real mode(Google it), has access to the entire
memory, has no security restraints and can run what ever instruction it needs. Applications and many sub-systems
run in user mode(level 3) which has a much higher security restriction and a bigger safe-guard for memory f***ups.

2.9.4 Calling a system function (eg read)

When we call a system function from a user-level, the function parameters are pushed to the stack. The library
code is then called and a system call number is added to the register. As the library procedure says, the kernel is
called and examines the system call number. The correct system call handler is found and executes the requested
operation. After the function-result is pushed from the stack to the buffer, the stack is cleaned and the process
continues.

2.9.5 Monolithic vs micro kernels

The big mess of monolithic kernels are a collection of functions linked into a single object. They are usually efficient
but very easy to crash hence due to their big mess of a complexity. Micro-kernels have very little functionality

Vegard Bergsvik @vstegard 15

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

compared, but they are very modular and portable. The goal is to have as little code as possible to run a 0S. The
device-drivers, file-systems and other services are run on servers.lt is less likely to crash, but has a lot of message
passing and this is where the bottlenecks appear.

2.9.6 What s aninterrupt?

They are a Sub-type of exceptions and an hardware driven electronic signal that result in a forced transfer of control
to an interrupt handling routine. asynchronous events cause them like finished disk operation, expired timers
etc. Each interrupt is associated with a pointer to a code segment by the Interrupt descriptor table (IDT). When an
interrupt occurs, the current state is captured, the controlled is transferred and the correct interrupt handler is
ordered to perform its routines. When the job is done, the previously captured stats is resumed and all is (usually)
good.

3 0S: Processes & CPU Scheduling

3.1 Processes

+ The “execution” of a program
- Program is the “cook-book”
- Process is the “cooking”
« Process table entry (process control block, PCB):
- Data structure to store the information needed to manage a process.
- “The manifestation of a process in an operation system”

3.1.1 Process Creation

+ A process can create another process using the pid_t fork(void) system call
- Seeman 2 fork
- Process ##1 and #2 can be identical right after for () but can give different results after termination

3.1.2 Program Execution

« To make a process execute a program one might use int execve(char x*filename, char
*params[], char envp[])system call
- Seeman 2 execve

3.1.3 Process Waiting

« To make a process wait for another process one can use pid_t wait(int *status) system call
- Seeman 2 wait

Vegard Bergsvik @vstegard 16

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

3.1.4 Process Termination

« A process can terminate in several ways:
- no more instructions to execute
- afunction finishes with a return
- thesystemcall void exit(int status)
* Terminates a process and return status value
* Seeman 3 exit
- thesystemcallint kill(pid__t pid, int sig)
* Sends a signal to a process to terminate it
* Seeman 2 kill,man 7 signal
« Usually, status value of 0 indicates success other indicates errors

3.1.5 Process states

 running
- running instructions
 ready
- ready for instructions
+ blocked
- waiting for “something/external event”

3.1.6 Context Switches

+ The process of switching one running process to another
- essential feature of multi-tasking systems
- computationally intensive
+ Possible causes:
- interrupts
- kernel-user mode transition
- scheduled switch due to algorithm and time slices

3.1.7 Processes vs Threads

+ Processes: resource grouping and execution {% capture images %} /images/process.JPG {% endcapture %}
{% include gallery images=images caption=“" cols=1 %}

+ Threads (light-weight processes)

- efficient cooperation between execution units
- share process resources (address space)
- have their own state, stack, processor registers and program counter

Vegard Bergsvik @vstegard 17

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium

25-11-2017

- no memory address switch
- thread switching is much cheaper

- parallell execution of concurrent tasks within a process {% capture images %} /images/thread.JPG {%

endcapture %} {% include gallery images=images caption="" cols=1 %}

3.1.8 Scheduling

+ Atask s a scheduleable entity/something that can run
« Several tasks may with to use a resource simultaneously
« Ascheduler decides which task can use the resource

Why do you care?

+ Learning priority support makes a “yuuuge” difference
+ Optimize the system to the given goals:

CPU utilization

Throughput

Response time
Fairness etc

« Prevent unnecessary waiting for e.g CPU, disk etc when they could have finished the job quicker

3.2 CPU Scheduling
3.3 FIFO and Round Robin

» FIFO:
- Very simple but may wait forever and short jobs get behind long jobs
- Unfair, but some are lucky
+ Round Robin
- FIFO Que
- Each process runs a given time
* 1/n of the CPU in max t time units per round
- Fair, but no oneis lucky
« Comparisons
- FIFO better for ling CPU-intensive jobs
- RR much better for interactivity #### Time Slice Size in RR
Right time slice can improve overall utilization
CPU bound: benefits from having longer time slices(

> 100ms

Vegard Bergsvik @vstegard

18

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017
+ 1/0 bound: benefits from having shorter time slices(
< 10ms
)
3.4 Scheduling: Goals
« Factors to consider:
- treat similar tasks in a similar way
- no process should wait forever
- short response times
- maximize throughput
- maximum resource utilization
- minimize overhead
- predictable access
+ Not possible to achieve all goals
« “Most reasonable” criteria depend on:
- Kernel:
* Resource management
- prosessor utilization, throughput, fairness
* User
- Interactivity
- Environment
* Server vs end-system
* Stationary vs mobile
- Target systems
* Most type of systems
* Batch systems
* Interactive systems
* Real-time systems
3.5 Scheduling classification
+ Scheduling algorithm classification:
- dynamic
- static
- preemptive
- non-preemptive
Vegard Bergsvik @vstegard 19

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

3.5.1 Preemption

+ Tasks waits for processing
+ Scheduler assigns priorities
« Task with highest priority will be scheduled first

3.6 Summary
3.6.1 Preemptive vs non-preemptive

Preemption is the act of temporarily interrupting a task. The running tasks are often interrupted for some time and
resumed later when a more prioritized task has finished its execution. Round Robin algorithm is often used here.
In non-preemptive scheduling a running task is executed till completion, they do not get interrupted. Typical
algorithm for thisis FIFO. If a user is running a program or pushing a button on a system with a non-preemptive-based
scheduler, it works almost like talking to your girlfriend when she is on here phone. It might take some time, or you
might not get a response at all.

3.6.2 Cooperative Scheduling/Multitasking

This is very similar to Preemptive scheduling, however task do not get suspended or interrupted. They relinquish
control of the CPU at it synchronization point, or when it needs another process to do something for them. This
causes less overhead than preemptive scheduling but also causes less reaction time and can some time crash a
system due to an infinite loop.

3.6.3 Virtual memory > Program relocation

Virtual memory gives the illusion of having infinite memory by utilizing the HDD as a temporary storage. This
allows multiple programs which demand more memory than what is available to run at the same time. Virtual
addresses are pointer to data going “back and fourth” from the HDD and RAM. Programs use virtual addresses to
store instructions and data; when a program is executed, the virtual addresses are converted into actual memory
addresses. Instead of relocating a program due to lack of memory, the assignment to a physical address space is
deferred until the program executes and the virtual memory address handler transfers data from the HDD to the
RAM.

3.6.4 Simple UNIX

The scheduling algorithm in in UNIX is fairly simple. A process priority is calculated as the ratio between used CPU
time(average ##ticks) and real time. Lower numbers gets higher priority. So kernel processes are prioritized hence
they also get a negative priority. Without any I/O which gets high priority, the algorithm is reduced to a round-robin
algorithm because no process with higher priority will interrupt the “current” cue.

Vegard Bergsvik @vstegard 20

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

3.6.5 fork() and execve()

System call fork() is used to create processes. It takes no arguments and returns a process ID. The purpose of fork()
is to create a new process, which becomes the child process of the caller. After a new child process is created, both
processes will execute the next instruction following the fork() system call. Therefore, we have to distinguish the
parent from the child. This can be done by testing the returned value of fork(): * If fork() returns a negative value,
the creation of a child process was unsuccessful. * fork() returns a zero to the newly created child process. * fork()
returns a positive value, the process ID of the child process, to the parent. The returned process ID is of type pid_t
defined in sys/types.h. Normally, the process ID is an integer. Moreover, a process can use function getpid() to
retrieve the process ID assigned to this process.fork() returns a positive value, the process ID of the child process, to
the parent. The returned process ID is of type pid_t defined in sys/types.h. Normally, the process ID is an integer.
Moreover, a process can use function getpid() to retrieve the process ID assigned to this process.

execve () executes the program pointed to by filename. Seeman 2 execve or thisvideo for more info. It sort of
replaces one process with another. Porcess with pid “123” will run some other task afte execve () but the process
still has pid “123”.

3.6.6 fork() bomb withwhile(1) fork() andif(fork() != 0) exit(0)

Fork Bomb, a form of denial-of-service attack against a computer system, implements the fork operation (or
equivalent functionality) whereby a running process can create another running process. Fork bombs count as
wabbits: they typically do not spread as worms or viruses. To incapacitate a system they rely on the (generally valid)
assumption that the number of programs and processes which may execute simultaneously on a computer, has a
limit. They are very difficult to stop when started, because the parents exit successfully(exit (©)) which makes the
child more difficult to fine hence it gets a new PID, and it allows the children to carry on without being auto-killed.

3.6.7 Context switching

When the preemptive processor scheduling interrupts a process, its state is stored and saved so that it can be
resumed on some point. This operation is called context switching. So when the current process is interrupted
or a system call is run, the state is saved into a datastructure called process control block(PCB). This includes all
the registers that the process is using, especially the instruction pointer(IP) and any other necessary instructions.
When the process is successfully suspended, it switches context and chooses the next process from the ready-
queue and restores its PCB. While the state of the interrupted process is saved into the PCB and the state from the
next process is loaded, the CPU does not do any other work and one might call it wasted time. This is where most of
the overhead is created in process scheduling.

Managing memory is: * Allocating space to precesses * Protecting memory regions * Providing “unlimited” memory
via virtual memory * Control the levels of memory

Vegard Bergsvik @vstegard 21

https://www.youtube.com/watch?v=9seb8hddeK4&list=PLNRgYkfQJI7yPPJ835Gc790_PXJ0hWQCN

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

4 0S: Managing memory

4.1 Hierarchies

« Memory closer to the CPU is faster but have less capacity.
+ Lower levels have a copy of data in higher levels.
« Speeds:
- cache(s)
- main memory(ram)
- secondary storage(disks)
- tertiary storage(tapes)
+ Hierarchies:
- tertiary storage (tapes)
- secondary storage (disks)
- main memory (ram etc)
- caches If the processor where to use 1 second on a task, the cache would use 2 seconds, main memory
1.5 minutes, secondary storage 3.5 months and tertiary storage a couple of hundreds of years.

4.2 Absolute and Relative addressing

Hardware often use absolute addressing. This is an absolute address and not a relative one which is the offset
from another address. * The have reserved memory regions * This is FAST!! * Reads data by referencing the byte
numbers in memory e.g : read absolute byte 0x000000ff

Software uses relative memory. This is independent of the process position in the memory, and the addresses are
expressed relative to some base location. * Dynamic address translation is finding the absolute address during
run-time and adding the relative and base addresses.

4.3 Processes Memory layouts

Most architectures processes partitions its available memory * A code segment * Usually read only * Can be shared
* A data segment -> Grows to higher addresses and towards stack * global variables * static variables * heap etc
* A stack segment -> Grows to lower addresses and towards heap * stores parameters/variables * System data
segment(Process control bloc) * segment pointers * pid etc * Command line arguments, environment variables,
threads etc at highest addresses

4.4 Global Memory layout

Memory is usually divided into regions * OS occupies low memory * sys-Control * resident routines * Remaining
area used for transient OS routines

Vegard Bergsvik @vstegard 22

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

4.5 Multiprogrammed and memory management

+ Use of secondary storage

+ Swapping: remove a process from memory
- Store state in secondary storage

« Overlays: manually replace parts of code and data

+ Segmentation/paging: remove parts of a process from memory
- usually fixed sizes stored on secondary medium

4.5.1 Fixed Partitioning

« Divide memory into static partitions
+ Advantages:
- easy implementation
- can support swapping
« Equal-size partitions
- Large programs cannot be executed
- Small programs waste memory
« Unequal-size partitions

Large programs can me run

Less fragmentation

Waste memory if only small processes or few processes if they are large

can have one queue per partition

4.5.2 Dynamic Partitioning

Divides memory dynamically at run-time and they are removed after jobs finish. Fragmentation increases with
system running time because memory is not re-organized. {% capture images %]} /images/dynpart1.JPG {% end-

«“»

capture %} {% include gallery images=images caption=“" cols=1 %} Compaction moves the data in memory and
removes the fragmentation. This takes time and consumes processing resources. Placement algorithms can help
reduce the need compaction. * First fit - > Best * Next fit - > Not good for large segments * Best fit - > Slowest, small
fragments, worst {% capture images %} /images/dynpart2.JPG {% endcapture %} {% include gallery images=images

caption="" cols=1 %}

4.5.3 Buddy System

+ Mix of fixed and dynamic partitioning
- sizes of
ok

+ Maintain list of holes with sizes {% capture images %} /images/buddsys.JPG {% endcapture %} {% include
gallery images=images caption="" cols=1 %}

Vegard Bergsvik @vstegard 23

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

4.5.4 Segmentation

Segments memory and addresses so that the process can fit more efficiently. Same principles as dynamic partition-
ing, gives no internal fragmentation and much less external fragmentation but adds a step to address translation.

4.5.5 Paging

When using paging, the OS reads data from the secondary storage in blocks called pages, all of which have identical
sizes. The physical region of memory containing a single page is called a frame. This strategy does not require
processes to be lined up consecutively into the memory. Like segmentation, addresses are dynamically translated
during run-time. This is where the overhead and latency is created.

4.5.6 Virtual Memory

Originally made for machines with little main memory, but also used today. * Break program into smaller indepen-
dent parts(Pages) * Some pages are in main memory and some on the HDD. * The MMU translates virtual addresses
to physical addresses using a page table

Basics:

The process access memory via the page table. The addresses are translated to either the main or secondary storage.
When the address is located at the RAM, the process handles it and goes off for the next address. If that address is
translated to being on the secondary storage ei the HDD, some form of algorithm determine that som part of the
main memory will be replaced with the memory waiting on the HDD. This operation is called Memory Lookup

4.5.7 Page fault

Page fault is an interrupt where the virtual memory address points to memory on the secondary storage and not
the primary. Page fault handling is the process where the current process state is saved, the correct page is handled
and replaced with another page in the main memory and at the end the control is returned to user. The magic of
selecting the page to replace is done with some very smart algorithms. * Random * FIFO, NRU, LRU Second chance
etc.

Most existing systems use a LRU-variant.

4.5.8 Speeding up paging

« Translation look-aside buffers is a hardware chache for the page table. It is a fixed number of slots containing
the last page table entries.

+ Lager page sizes reduce number of pages.

+ Multi level page tables

Vegard Bergsvik @vstegard 24

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

4.6 Summary
4.6.1 Multiprocessing

Even with limited processor cores, modern computers run several thousand processes simultaneously. The handling
and many strategies of multiprocessing is a very sentral aspect of OS.

4.6.2 Partitioning

Handling memory on a computer is very dependent on which partitioning-strategies one chooses to use.

4.6.3 Segmentation

To better utilize the memory and lessen fragmentation one often segment coherent blocks of data so that more
memory is utilized. This also works as a security measure hence each segment has different read, write and
execution permissions. It does however create some overhead by translating incoming addresses to the correct
byte in the segments.

4.6.4 Fragmentation

A memory consisting of small “holes” due to lack of or poor memory management strategies, is called a fragmented
memory. This can make allot of the memory useless due to some processes might need larger consecutive memory
slots. Fragmentation is almost completely removed when implementing virtual memory, except for some small
internal fragmentation. This is dependent of the framing of the paging method and size of the OS.

4.6.5 Paging

One of the most important concepts in memory handling and crucial for virtual memory. It allows us to put some
parts of the memory out of the main storage to the secondary e.g HDD. This gives the illusion of having far more
memory than we physically do and allows several large processes to run simultaneously. The big strategy discussions
with paging regards the algorithms which decides which pages to replace in the main memory when a new page
from the secondary storage needs to be allocated. The processor translates virtual addresses to physical ones,
almost like in Segmentation, by looking up paging tables that the MMU handles. A separate hardware component
called Translation Lookaside Buffer(TLB) is used to speed up the address translation and lookup.

4.6.6 Absolute and relative addresses

When utilising Virtual memory the computer handles relative addresses which is a pointer with an offset to the base
address(The address we want).

Vegard Bergsvik @vstegard 25

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

4.6.7 LRU

Last recently used is a very good algorithm in many cases when swapping pages, however it is somewhat difficult to
implement it. A linked list of all pages in memory needs to be maintained, and updated on every memory reference.
Finding a page in the list, deleting it, and the moving it to the front is a very time consuming operation, even in HW.

5 OS: Storage: Disks & File Systems

5.1 (Mechanical) Disks
+ Used to have a persistent Systems

+ Cheaper and have more capacity than main memory
« Vastly slower

5.1.1 But we have SSDs!
« Sort of like memory

« Much faster than disks (ms vs us)
+ More expensive

Large data centers and storage locations still use disks due to the cost of using SSDs. And they will continue to be
used for a long while.

5.1.2 Mechanics of Disks - Video
A disk consists of: * Platters * Spindle * Tracks * Disk Heads * Sectors * Cylinders
5.1.3 Disk capacity

6 Storage space is dependent on: * # Platters * One or both sides *

7 Tracks per surface * # sectors per track * bytes per sector

7.0.1 Disk Access Time

The time between the moment issuing a disk request and the time the block is resident in memory. Consists of: *
Seek time * Rotational delay * Transfer time * Other delays

Vegard Bergsvik @vstegard 26

https://www.youtube.com/watch?v=wteUW2sL7bc

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium

25-11-2017

Seek Time

Seek time is the time to position the head Time to move the head:

a+Bvn
*
[0
=fixed overhead *
g
=seek time constant *
n

= number of tracks

Rotational delay

Time for the disk platters to rotate so the first of the required sectors are under the disk head * Average delay i 7/2

revolution

Transfer Time

Time for data to be read by the disk head, i.e., time it takes the sectors of the requested block to rotate under the

head * Dependent on data density and rotation speed

Other delays

« CPU time to issue and process /0

« contention for controller, bus, memory

« verifying block correctness with checksums (retransmissions)
+ waiting in scheduling queue

7.0.2 Writing and modifying blocks

+ A write operation is analogous to read operations
- must potentially add time for block allocation

- acomplication occurs if the write operation has to be verified - must usually wait another rotation and

then read the block again
- Total write time =read time (+ time for one rotation)
+ A modification operation is similar to read and write operations
- cannot modify a block directly:
* read block into main memory

Vegard Bergsvik @vstegard

27

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

* modify the block
* write new content back to disk
- Total modify time =read time (+ time to modify) + write time

7.0.3 Disk Controller

A small processor which: * Controls the actuator moving the head * Selects head, platter and surface. * Knows when
the right sector is under the head * Transfers data between main memory and disk

7.1 Data Placement

« Interleaved placement is fine for predictable workloads reading multiple files. But we get no gain if we have
unpredictable disk accesses.
« Non-interleaved (or even random) placement can be used for highly unpredictable workloads
« Contiguous placement stores disk blocks contiguously on disk.
- Minimal disk arm movement reading the whole file
- no inter-operation gain if we have unpredictable disk accesses (but still not worse than random place-

men)

7.2 Disk Scheduling

Seek time is the dominant factor of the total disk I/O time Several traditional algorithms: * First-Come-First-Serve
(FCFS) * Shortest Seek Time First (SSTF) * SCAN (and variations) * Look (and variations)

7.2.1 Modern Disk Scheduling

« Hide their true layout

« Transparently move blocks ta spare Cylinders

+ Have different zones(More data crammed on the edges)
» Head accelerates

+ Prefetching with buffer caches

+ low-level scheduler

+ Considered “black boxes”

7.3 Summary
7.3.1 Disk

Adisk is a nonvolatile storage device consisting of rotating disks with a magnetic layer. * Disks: The rotating plates
with the magnetic layer. HDDs often consist of 12 disks with data stored on both sides. * Tracks are the “lines” on

Vegard Bergsvik @vstegard 28

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

the disks similar to vinyls, except they run in circles and not spirals, which contains the bits. * Head: The sensor
which reads the data from the tracks. * Sector: Areas of which the tracks are divided into. Newer disks take into
account the variable data-storage capability of the tracks at the ends of the platters. Larger circles gives longer
tracks etc. * Cylinder: Tracks on top of tracks on the platters make cylinders.

7.3.2 Access time

The time is takes from requesting data until it is received from the disk. This time consists roughly of seek time,
rotational delay, transfer time and some other delays.

7.3.3 Disk scheduling

The strategic protocols on how to administrate the mechanical parts in a disk to get the smallest possible Accesstime.
There are many algorithms to use and the choice is never easy.

7.3.4 Caching

Storing copies of data temporarily to make to prohibit to many disk accesses. It is a very important tool in increasing
the efficacy of a system by caching often used data closer to the process e.g main memory or the CPU cache.

8 OS: Inter-Process

8.1 Managing Mailboxes

+ Mailboxes are implemented as message queues sorting messages according to FIFO
« See man:

- msgget

- msgsnd

- msgrcv

- msgctl

8.2 Pipes

« Classic IPC method under UNIX
« A method of connecting the standard output of one process to the standard input of another.
« The system call pipe(fd[2]) creates one file descriptor for reading (fd[0]) and one for writing (fd[1])

Vegard Bergsvik @vstegard 29

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium

25-11-2017

8.3 Mailboxes vs Pipes

« Msgtypes
- Mailboxes may have different msg types
- pipes do not have different types
« Buffer
- pipes - one or more pages storing messages contiguously
- mailboxes - linked list of messages of different types
« More than two processes
- apipe often (not in Linux) implies one sender and one receiver
- many can use a mailbox

8.4 Share memory

+ Shared memory is an efficient and fast way for processes to communicate

+ Shared memory can best be described as the mapping of an area (segment) of memory that will be mapped

and shared by more than one process.
+ This is by far the fastest form of IPC.

« A segment can be created by one process, and subsequently written to and read from by any number of

processes.
« System calls:
- shmget()
- shmat()
- shmctl()
- schmdt()

8.5 Signals

« Signals are software generated “interrupts” sent to a process

+ Sending signals:
- kill(pid, signal)signal system call to send any signal to pid
- raise(signal)signal call to send signal to current process

8.5.1 Signal handling

« Asignal handler can be invoked when a specific signal is received A process can deal with a signal in one of

the following ways:
- default action
- block the signal (SIG_KILL & SIG_STOP cannot be ignored)
- catch the signal with a handler

Vegard Bergsvik @vstegard

30

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

8.6 Summary
8.6.1 IPCs

The most used formes of IPCs on a Unix machine are mailboxes, pipes, shared memory and signals. Both mailboxes
and pipes are unidirectional and based upon the message queue. How ever mailboxes can hava different message
types, but pipes can not. Pipes have one or more pages which stores messages contiguously and mailboxes have
linked list of messages of different types. Many processes can use a mailbox, but pipes often implies just one sender
and receiver.

8.6.2 Shared memory segments

When using shared memory as an IPC channel, we have to allocate a memory segment which can be shared by
all the necessary processes. This can not be done with malloc hence it allocates a block in a specific processes
heap, which again is private. We have make sure that all the data we want exposed to other processes is in a shared
memory segment.

8.6.3 mmap and smget

The smget allocates a shared memory segment and returns the identifier to that segment. What mmap does is it
maps files or devices into the memory. This can be done private or as a shared mapping so that it is visible to other
processes mapping the same region. A “good” use of mmap is when one uses fork to create child processes hence
itis only one call.

9 DC: Intro to data communication

9.0.1 Internet

« Billions of interconnected devices
« Communication links such as fiber, copper etc.
« Protocols: TCP, IP, HTTP, FTP, PPP..
+ Internet standards:
- RFC: Request for comments
- IETF: Internet Engineering Task Force

9.0.2 End systems

+ Run application programs
- Web browser, web server, email etc.
- Edges

Vegard Bergsvik @vstegard 31

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

« Client/server model

- Clients ask for, and get a service from the servers
+ Peer-to-peer model

- Interactions are symmetrical

- E.g. telephone conferences

9.0.3 Protocols

Protocols define formats, order of sending and receiving of messages, and the actions that the reception initiates.

Protocol Layers

« Modularisation simplifies
- Design
- Maintenance
- Updating of a system
« Explicit structure allows
- Identification of the individual parts
- Relations among them
+ Clear structure: layering

9.0.4 TCP/IP - protocol stack

« application: supports network applications
- ftp, smtp, http
- Your applications
« transport: data transfer from end system to end system
- TCP, UDP
+ network: finding the way through the world wide network from machine to machine
- IP
+ (data) link: data transfer between two neighbors in the network
- PPP (point-to-point protocol), Ethernet
« physical: bits on the wire

{% capture images %} /images/dc2.JPG {% endcapture %} {% include gallery images=images caption="" cols=1 %}
9.0.5 OSI - model
« Open Systems Interconnection

« Two additional layers to those of the Internet stack
+ presentation: translates between different formats

Vegard Bergsvik @vstegard 32

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

+ session: manages connection, control and disconnection of communication sessions

{% capture images %]} /images/dc1.JPG {% endcapture %} {% include gallery images=images caption="" cols=1 %}

9.0.6 Layering: logical communication

« units implement functionality of each layer in each node
+ Units execute operations, and exchange messages with other units of the same layer

9.0.7 Protocol layer and data

+ Each layer takes data from next higher layer
+ Adds header information to create a new data unit (message, segment, frame, packet)
+ Send the new data unit to next lower layer

{% capture images %]} /images/dc3.JPG {% endcapture %} {% include gallery images=images caption="" cols=1 %}

9.0.8 Core networks
10 - Graph of interconnected routers ### Circuit Switching

« Setup phase is required

+ Dedicated resources

« Link bandwidth, router capacity
+ Guaranteed throughput

Packet Switching

+ Data streams share network resources

« Each packet uses the entire bandwidth of a link
+ Resources are used as needed

+ Packet switching allows more users in the net!
« Good for data with bursty behavior

+ Resource sharing

+ No setup phase required

Delay in packet switching networks

« Four sources of delay in each hop
« Node processing:
- Determining the output link
* address lookup

Vegard Bergsvik @vstegard 33

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

- Queuing
* Waiting for access to the output link
* Depends on the congestion level of the router

{% capture images %} /images/dc4.JPG {% endcapture %} {% include gallery images=images caption="" cols=1 %}

« Transmission delay:

- Time required to send a packet onto the link = L(packet size)/R(link bandwith)
+ Propagation delay:

- Propagation delay = d(physical link length)/s(propagation speed in the medium)
« traffic intensity = La(average packet arrival rate)/R

Packet switched network: Routing

+ Goal: move packets from router to router between source and destination
+ Datagram network:
- Destination address determines the next hop.
- Path can change during the sessions.
- Routers need no information about sessions.
- Analogy: ask for the way while you drive.
« Virtual circuit network:
- Each packet has a tag (virtual circuit ID), which determines the next hop.
- Path is determined when connection is set up, and remains the same for the entire session.
- Routers need state information for each virtual circuit.

10.0.1 Network layer: IP

+ Datagram switching
« Offers:
- Addressing
- Routing
- Datagram service
* Unreliable
* Unordered
+ Can use virtual circuits

10.0.2 Transport layer: TCP

« Connection-oriented service of the Internet

Flow control
+ Congestion control
+ Reliable, ordered, streamoriented data transfer

Vegard Bergsvik @vstegard 34

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

10.0.3 Transport layer: UDP

« Unreliable, unordered, packetoriented data transfer
« No flow control
+ No congestion control

10.1 Summary
10.1.1 Internet

Internet(capitol I) represents a specific network. It is the backbone for the world wide web and connects a lot of
computer together. It helps us surf the web, send email and a whole lot of other protocols.

10.1.2 End system

The definition of an end system is a client which does not perform any tasks on behalf of the network, such as
routing etc.

10.1.3 Protocols

Protocols define how we communicate between computers. We need a lot of protocols because there are several
ways to communicate and use the network.

10.1.4 Protocol stack

A protocol stack is a collection of protocols in different layer, whom each on its own controls and defines certain
parts of a transfer.

10.1.5 OSI-model

The OSI-modelis a theoretical model used for describing how a network is built up by several layers with its own
protocols. It is a useful basis when we design networks in real life.

Layers explained:

Each layer is a logical division of tasks, and each layer uses services offered by the underlying layer. The are set up
so that we do not have to think about how they work. They allow a network to use several link-technologies, handle
multiple protocols and used by several applications.

Vegard Bergsvik @vstegard 35

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

Application (Layer 7)

OSI Model, Layer 7, supports application and end-user processes. Communication partners are identified, quality
of service is identified, user authentication and privacy are considered, and any constraints on data syntax are
identified. Everything at this layer is application-specific. This layer provides application services for file transfers,
e-mail, and other network software services. Telnet and FTP are applications that exist entirely in the application
level. Tiered application architectures are part of this layer.

Presentation (Layer 6)

This layer provides independence from differences in data representation (e.g., encryption) by translating from
application to network format, and vice versa. The presentation layer works to transform data into the form that the
application layer can accept. This layer formats and encrypts data to be sent across a network, providing freedom
from compatibility problems. It is sometimes called the syntax layer.

Session (Layer 5)

This layer establishes, manages and terminates connections between applications. The session layer sets up,
coordinates, and terminates conversations, exchanges, and dialogues between the applications at each end. It
deals with session and connection coordination.

Transport (Layer 4)

OSI Model, Layer 4, provides transparent transfer of data between end systems, or hosts, and is responsible for
end-to-end error recovery and flow control. It ensures complete data transfer.

Network (Layer 3)

Layer 3 provides switching and routing technologies, creating logical paths, known as virtual circuits, for transmitting
data from node to node. Routing and forwarding are functions of this layer, as well as addressing, internetworking,
error handling, congestion control and packet sequencing.

Data Link (Layer 2)

At OSI Model, Layer 2, data packets are encoded and decoded into bits. It furnishes transmission protocol knowledge
and management and handles errors in the physical layer, flow control and frame synchronization. The data link
layer is divided into two sub layers: The Media Access Control (MAC) layer and the Logical Link Control (LLC) layer.
The MAC sub layer controls how a computer on the network gains access to the data and permission to transmit it.
The LLC layer controls frame synchronization, flow control and error checking.

Vegard Bergsvik @vstegard 36

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

Physical (Layer 1)

OSI Model, Layer 1 conveys the bit stream - electrical impulse, light or radio signal through the network at the
electrical and mechanical level. It provides the hardware means of sending and receiving data on a carrier, including
defining cables, cards and physical aspects. Fast Ethernet, RS232, and ATM are protocols with physical layer
components.

10.1.6 Physical/Logical communication

Data moves physically between a lot of layer and communication links, however the application layers on each end
system has a direct logical communications line. The experience a direct link and do not care about the physical
communication in between.

10.1.7 Communication Media

Physical data can transfer between a lot of different communications mediums, such as satellite, radio, and ca-
bles:copper, fiber, coax, TP(CAT5 etc.)

10.1.8 Circuit switching

The communications method of Circuit switching in a network creates and connects a logical direct connection
between two machines. It passes through a defined set of routers and locks down the needed resources until the
connection os closed.

10.1.9 Packet switching

Packet switching attaches an address to the data being sent which allows the routers to pass it on using tables of
neighbors and certain algorithms.

10.1.10 Headers

Headers refer to data placed at the beginning of a block of data by the different layers. Every time a data-package
passes a layer, the corresponding header is “pealed” off or added depending og Rx vs Tx.

10.1.11 Trailers

Trailer are similar to headers, but they are added to the back of the data-packet i.e trailer. They often mark the end
of the data-packet to increase performance by dropping the calculation of data length.

Vegard Bergsvik @vstegard 37

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

11 DC: Introduction to Berkeley sockets

11.1 Read & Write

« Same functions used for files etc.
« Thecallread(sd, buffer, n);

- Reads up to n characters

- From socket sd

- Stores them in the character array buffer
« Thecallwrite(sd, buffer, n);

- Writes up to n characters

- From character array buffer

- Tothe socket s

11.2 Alternatives to Read & Write

+ Thecallrecv(sd, buffer, n, flags);
- Flags, normally just 0, but e.g., MSG_DONTWAIT ,MSG_MORE, ..
* Used to control the behavior of the function
* Several flags can be specified at once with bitwise or operaions
* MSG_DONTWAIT | MSG_MORE
+ Thecallsend(sd, buffer, n, flags);
- Flags, same as above

11.3 Creation of a connection

+ One side must be the active one
- Take the initiative in creating the connection
- Thisside s called the client
« The other side must be passive
- Itis prepared for accepting connections
- Waits for someone else to take initiative
- Thisside is called the server

11.4 Special for the server side

+ In case of TCP
- One socket on the server side is dedicated to waiting for a connection
- Foreach client that takes the initiative, a separate socket on the server side is created
- This is useful for all servers that must be able to serve several clients concurrently (web servers, mail
servers,...)

Vegard Bergsvik @vstegard 38

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium

25-11-2017

11.4.1 Client:

<Necessary 1includes>
int main()
{
char buf[13];
<Declare some more data structures>
<Create a socket called sd>
<Identify the server that you want to contact>
<Connect to the server>

/* Send data */
write(sd, Hello world!, 12);

/* Read data from the socket */
read(sd, buf, 12);

/* Add a string termination sign,
and write to the screen. */
buf[12] = \0;

printf(%s\n, buf);

<Closing code>

11.4.2 Server:

<Necessary 1includes>
int main()
{
char buf[13];
<Declare some more data structures>
<Create a socket called request-sd>
<Define how the client can connect>
<Wait for a connection, and create a new socket sd
for that connection>

/* read data from the sd and
write it to the screen */
read(sd, buf, 12);

buf[12] = \0;

Vegard Bergsvik @vstegard

39

INF1060 - Introduksjon til operativsystemer og datakommunikasjon - Kompendium 25-11-2017

printf(%s\n, buf);

write(sd, buf, 12);

<Closing code>

Vegard Bergsvik @vstegard 40

	Programmeringsspråket C
	Kort om C
	Fordeler:
	Ulemper:
	Kompilering
	C i forhold til Java
	Viktige forskjeller
	String
	printf
	Pekere - * og & - Dette tar tid..
	Minneallokering
	Innlesing fra bruker
	Filer

	Innlesing fra fil
	Man-sider
	Minnet i datamaskinen
	Bitoperasjoner
	Dobbelpekere
	Hensikten
	typedef
	Heap og Stack

	Flere filer
	Header-filer

	OS: Introduksjon
	Hardware
	What is an operating system (OS)?
	OS Categories
	Why study OSes?
	OS components and services
	Primary components
	Device management
	Interfaces

	Interrupts
	Exceptions
	Booting, protection, kernel organization
	Summary
	Why we have it and why you should care (OS)
	What does BIOS and bootstrap do?
	Levels and their importance.
	Calling a system function (eg read)
	Monolithic vs micro kernels
	What is an interrupt?

	OS: Processes & CPU Scheduling
	Processes
	Process Creation
	Program Execution
	Process Waiting
	Process Termination
	Process states
	Context Switches
	Processes vs Threads
	Scheduling

	CPU Scheduling
	FIFO and Round Robin
	Scheduling: Goals
	Scheduling classification
	Preemption

	Summary
	Preemptive vs non-preemptive
	Cooperative Scheduling/Multitasking
	Virtual memory > Program relocation
	Simple UNIX
	fork() and execve()
	fork() bomb with while(1) fork() and if(fork() != 0) exit(0)
	Context switching

	OS: Managing memory
	Hierarchies
	Absolute and Relative addressing
	Processes Memory layouts
	Global Memory layout
	Multiprogrammed and memory management
	Fixed Partitioning
	Dynamic Partitioning
	Buddy System
	Segmentation
	Paging
	Virtual Memory
	Page fault
	Speeding up paging

	Summary
	Multiprocessing
	Partitioning
	Segmentation
	Fragmentation
	Paging
	Absolute and relative addresses
	LRU

	OS: Storage: Disks & File Systems
	(Mechanical) Disks
	But we have SSDs!
	Mechanics of Disks - Video
	Disk capacity

	Storage space is dependent on: * # Platters * One or both sides *
	Tracks per surface * # sectors per track * bytes per sector
	Disk Access Time
	Writing and modifying blocks
	Disk Controller

	Data Placement
	Disk Scheduling
	Modern Disk Scheduling

	Summary
	Disk
	Access time
	Disk scheduling
	Caching

	OS: Inter-Process
	Managing Mailboxes
	Pipes
	Mailboxes vs Pipes
	Share memory
	Signals
	Signal handling

	Summary
	IPCs
	Shared memory segments
	mmap and smget

	DC: Intro to data communication
	Internet
	End systems
	Protocols
	TCP/IP - protocol stack
	OSI - model
	Layering: logical communication
	Protocol layer and data
	Core networks

	- Graph of interconnected routers ### Circuit Switching
	Network layer: IP
	Transport layer: TCP
	Transport layer: UDP

	Summary
	Internet
	End system
	Protocols
	Protocol stack
	OSI-model
	Physical/Logical communication
	Communication Media
	Circuit switching
	Packet switching
	Headers
	Trailers

	DC: Introduction to Berkeley sockets
	Read & Write
	Alternatives to Read & Write
	Creation of a connection
	Special for the server side
	Client:
	Server:

